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A constructive method for control synthesis for the problem of the reorientation of an asymmetric 

solid is presented using a game-theoretic model of interference. Prescribed “geometric constraints” on 

the control functions are taken into account. The method is based on a choice of the structural form of 

control rules that enables the solution of the original non-linear problem to be reduced to solving 

auxiliary linear game-theoretic problems. The non-linear control rules obtained in this way are robust 

(stable) and ensure that the body arrives at the prescribed state in a finite time, which can be computed 

within the framework of the proposed solution scheme starting from the time-optimization 

requirement. A method of estimating the guaranteed minimum reorientation time is given. The results 

of a computer simulation are presented. 

The possibility of extending the approach in question to the case of reorientation with 
simultaneous damping of the angular velocity of the body is considered. 

From the standpoint of general problems of control theory the proposed approach is close to 
the methods of decomposition, partial stabilization, and exact linearization of non-linear 
control systems, which have been extensively developed in recent years. 

There are now many publications devoted to the problems of controlling the angular motion 
of a solid (see, for example, [l-13] and the bibliography therein). Problems of this kind are of 
interest in the study of miscellaneous problems that arise, for example, in the dynamics of 
aircraft and spacecraft, robotics, and biomechanics. In a strictly non-linear formulation it is 
hard to find optimum solutions for such problems, and they are often divided into two stages: 
rotation damping and reorientation in space. At the first stage the study is based on Euler’s 
dynamical equations, a knowledge of the angular position of the body being unnecessary. At 
the second stage the initial and final states are stationary states. The orientation can be altered 
in a number of ways [l-13]: (1) by three successive rotations about connected axes; (2) in the 
class of planar rotations about the Euler axes (extensive turn), in which case the angular vector 
of the body keeps a fixed position in space; (3) several planar rotations; (4) one spatial turn 
without any additional restrictions on the character of the resulting motion. The question of 
which of the schemes is appropriate for optimal control is solved separately in each case, As a 
rule, the prescribed speed and fuel consumption as well as reliability and technological 
requirements are taken into account. 

The optimization problems of controlling the extensive turn are most completely reflected in 
the literature. This method is particularly effective in those cases when the inertia ellipsoid of 
the body is close to a sphere or the control is realized by small control moments 171. Problems 
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concerned with the optimum reorientation of a solid body by a single spatial rotation have 
been less extensively studied 1111. 

The actual conditions under which objects function make it necessary to take rnto account 
constantly acting interference and perturbations. The control process becomes especiallv 
difficult if only the minimum information about the interference, namely their limits of 
variation, is available. Here one is concerned with control under conditions of uncertainty. In 
this case, however, as is shown in this paper, for the stage of altering the orientation of the 
body one can put forward a constructive method of solution subject to the constraints on the 
control, which, even if not rigorous, is completely acceptable from the viewpoint of 
applications. 

The proposed approach rests on choosing a structural form of control rules that enables one 
to reduce the original non-linear problem to auxiliary linear control problems. The additive 
“auxiliary interference” appearing in the auxiliary linear control systems (generated by an 
appropriate transformation of interference in the original system) are then treated as player- 
opponent control functions. As a result, the auxiliary linear control systems can bc regarded as 
conflict-control systems. The parameters of the chosen structural form of the original control 
rules are determined as player-opponent control strategies in the corresponding linear game - 
theoretic problems. In this way one obtains robust (stable) non-linear control rules (as a 
synthesis) ensuring a guaranteed result when solving the original non-linear control problem. 
Namely. it is guaranteed that the solid will move precisely into the prescribed final state (by if 
single spatial rotation) in a finite time for any admissible form of interference. A constructive 
method of estimating the reorientation time is proposed. taking into account the given 
constraints on the control functions. 

The proposed scheme for solving the problem is such that the reorientation time does not 
exceed the minimum guaranteed control time in the corresponding linear game-theoretic 
problem. In this sense the resulting rules for controlling the reorientation (making the most ol 
the possibilities of the structural form proposed for them) can be called time-suboptimal with 
respect to the action from the given class. 

The feasibility of extending the approach to the case of the problem of reorientation with 
simultaneous damping of the angular velocity of the body is discussed. 

I. I~ORMLJI,Al‘ION OF 7‘HIi PROHI,EM 

Consider Euler’s dynamicai equations 

Arx; = (A2 - A3)x2x3 + r+ + I+ (1 2 3) (Lij 

(one of the three equations is wrilten down: the others can be obtained by a cyclic permutation 
of the indices 1 -+ 2 j-3). Equations (1.1) describe the angular motion about the centre of 
mass of a solid subject to control moments 11, and moments u, characterizing the external 
forces and uncontrollable perturbations. Here and henceforth (unless otherwise stipulated) 
i= 1. 2, 3. In (1.1) _rr are the projections of the angular velocity vector of the body onto its 
principal axes of inertia and A, are the main central moments of inertia of the solid. We denote 
by x, u, v the vectors formed by the components s,. 11,. 1)‘. respectively. 

We shall consider Eqs (1.1) together with the kinematic equations 

2x0 = -(X,X, + X*L* +x3&), 2X, = x,X0 +x3%, - x*h, (1 2 3) ( 1.2) 

in terms of the Rodrigues-Hamilton variables which determine the orientation of the solid. In 
addition. the variables h, and h, in the quaternion h satisfy the relationship 
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In a number of cases system (l.l)-(1.3) serves as a model of the angular motion of a 
spacecraft. The vector A defines the direction (orientation) of the spacecraft relative to some 
physical frame of reference. The controlling moments z.L,. are realized by special engines and/or 
rotors (flywheels, gyroscopes). 

The devices producing the controlling moments have limited capabilities. We shall assume 
that the “geometric constraints” 

I I Ui <(xi = const > 0 (1.4) 

are imposed on the controlling moments. Here ai are given numbers characterizing the 
maximum possible magnitudes (levels) of llj. 

Various assumptions about the interference I+ acting on the body can be made. If the 
various forms of interference are stochastic processes (for example, white noise), then a 
stochastic (probabilistic) approach to the solution is possible. As it applies to certain problems 
of controlling the angular motion of a solid (e.g. a spacecraft) such an approach has been 
considered, for example, in [14-173, 

However, in many cases just the minimum information about the interference, namely its 
limits of variation, is available and no probabilistic characteristics of the various forms of 
interference within these limits are known In this case only constraints of the form 

Iq(t)l s pi = const > 0 (1.5) 

are imposed. The numbers pi characterize the maximum possible interference magnitudes 
(levels), which can take the form of any piecewise continuous time-dependent functions u,(t) 
within the limits (1S). As opposed to the stochastic approach, differential games [l&-21] 
include control problems that guarantee the desired result even for the worst possible action of 
interference. This approach applied to the problems of controlling the angular motion of a 
solid is considered in the present paper. 

Let us make the control problems under consideration more specific. Suppose that the class 
K = (u : u = u(x, A), x, A) E D) of piecewise-continuous functions (in an admissible domain D 
of x and A) that satisfy (1.4) is given, and also the class KI = (v= v(t)] of interference that 
satisfies (1.5) and are piecewise-continuous in any finite interval r ~[[t,, t,]. 

Problem 1 (of reorientation). It is required to find control rules u E K that will take the body 
from the initial state A(&) = A0 to the prescribed state A@,) = A’, where (A”, A’) E D, in a finite 
time for any admissible form of interference u E K,, Both states are stationary and x(to> = x0 = 
x(tJ = x1 = 0. The time t, > to is not fixed. 

Problem 2 (of reorientation with angular velocity dampening). It is required to find a control 
rule u E K, which solves Problem 1 in the case when x0 f 0. 

2. THE PROPOSED APPROACH TO THE SOLUTION 

Because of the essential non-linearity of system (1 .I)-(1.3) it is quite difficult to solve 
Problems 1 and 2 rigorously, especially when it is required in addition that the guaranteed 
reorientation time should be a minimum. This is also related to the constructive estimate of the 
guaranteed minimum reorientation time. In such a situation it is natural to seek simple control 
rules which, even if not time-optimal, enable one to obtain an acceptable reorientation time. 
Our aim is to find time-efficient control rules. Furthermore, we consider the solution of 
Problems 1 and 2. 

To realize this aim we assume that the structural form (the construction) of the desired game 
strategies 11.; is given. As a basis we take the constructions of control rules which solve the 
probIems of controlling the angular motion of a solid such as those proposed in [22, 231 for the 
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ideal case without interference (u, z 0). In this framework the original non-linear problem can 
be reduced to solving a number of control problems of one type for auxiliary linear systems. 
These systems have a simpler form h, = ~tp in the case of triaxial reorientation and S, = ~4;” 
(j= 1, 3), .& =U,X (s, are the Poisson variables, the indices being in agreement with [22]) in the 
case of uniaxial reorientation. 

The choice of the auxiliary control functions II,? is not unique and is governed by certain 
requirements concerned with the optimality of the desired control rules If, in the original non- 
linear problem. Therefore rr$ are measurable parameters (in accordance with the above 
requirements) in the invariable structure of 14,. In the case of interference U, we shall deal with 
the parameters u,* in the invariable structure of the desired control functions II, starting from 
the solution of the corresponding time-minimax game problems for the auxiliary linear ., 
conflict-control systems. These are systems of the form h, = tr,* + u,* for triaxial reorientation or 
the corresponding form for uniaxial reorientation. Here 11; is the “auxiliary interference” 
arising in the auxiliary linear systems during the transition from the original “perturbed” non- 
linear system. 

Within the framework of the proposed approach it is not only possible to synthesize the 
equations but also obtain a constructive estimate of the minimum guaranteed reorientation 
time. Finding it involves a computation of the “worst” interference u,?, which is characteristic 
of game-theoretic methods. Besides, overestimated inequalities are used both in the estimates 
of UT, themselves and (possibly) in verifying the constraints (1.4) on rr,*. Even though in this 
case the estimate of the reorientation time is not only “cautious” but somewhat excessive, as ;t 
result one can expect an acceptable guaranteed result in the solution of the complex non-linear 
problem. 

The proposed method is one of several possible approaches to the decomposition of non - 

linear control systems. 
The idea of the method is close to those in [24-261, from which it differs in that in the 

synthesis of equations it uses non-linear transformations of variables of the type introduced in 
[22, 231 to solve the problem of controlling the angular motion of a solid when there is no 
interference. Similar methods of transforming the variables are, in particular, closely related to 
the methods of studying problems of stabilizing dynamical systems with respect to some of the 
variables (partial stabilization) [13, 27-321, which have been more frequently used in recent 
years. This connection is due to the auxiliary roie of the stabilization problem with respect to 
some of the variables in the course of solving the present problem of the reorientation of a 
body. From the viewpoint of the general analysis of stabilization and stability problems with 
respect to some variables (considered, respectively, in a finite or infinite time interval) this was 
pointed out in 113, 321. Apart from the above-mentioned problems, an approach of this kind is 
also related to the methods of exact linearization of non-linear control systems [33-361 and 
vector Lyapunov functions applied to non-local control problems f37, 381, which have been 
developed in recent years. 

The proposed approach is discussed in more detail below. 

3. THE STRUCTURE OF CAME STRATEGIES 

In accordance with the scheme outlined above we shall determine the structural form of the 
original game strategies starting from the solution of Problems 1 and 2 when there is no 
interference (u, = 0). 

To do this we consider control rules rr, of the type [13,22,23] 

ui =&&‘“‘(x,h.u*) (3.1) 

where u* is the auxiliary control vector formed by I$. For a certain choice of f;(O) one can 

separate the auxiliary linear control system 
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from the closed non-linear system (I.l)-(1.3) (3.1). 
System (3.2) consists of three simpler independent linear subsystems. The auxiliary control 

functions UT in (3.2) are chosen depending on the aims of the control in the original non-linear 
problems 1 and 2. 

The construction (3.1) is just one of possible constructions 

ui =&“‘(&I*), i=(O,1,2,3) (3.3) 

which enable one to select auxiliary linear control systems of type (3.2) from the closed systems 
(l.l)-(1.3), (3.3) for a specific choice of A(‘), The set of indices in (3.2) depends on the index of 
h in the denominator in (3.3). The index i = 0 corresponds to i = 1,2,3, i = 1+ i = 0, 2,3, etc. 

Along with the independent constructions (3.3), “combined” constructions are also possible, 
which use the independent constructions (3.3) successively. A similar “arsenal” of techniques 
based on (3.3) enables one, in principle, to solve the problems of controlling the angular 
motion of a solid for any boundary conditions [13, 231. However, when choosing some optimal 
solutions it is necessary not only to optimize the independent constructions (3.3) and (when 
necessary) the rules for combining them, but possibly also to reduce (or damp) the angular 
velocity of the body. Here, as in other approaches, it is difficult to choose the precise (from the 
mathematical point of view) optimum solutions. However, in the iterative regime widely used 
in the modern applied theory of automatic control [39] a solution acceptable in practice can be 
constructed in real time using the proposed construction. In particular, on the basis of the 
solution of the corresponding linear time-optimal control problems for systems of type (3.2) 
one can establish time-suboptimal control rules (see [13]). 

The point (and a definite advantage) of such an approach is that the original control 
problems 1 and 2 for the essentially non-linear system (l.l)-(1.3) can be solved on the basis of 
the solution of the corresponding control problems for simpler linear systems of type (3.2). 
This enables us to linearize the original non-linear problem without loss of control quality due 
to simplification. 

Indeed, the variables hi in the auxiliary linear system (3.2) define precisely the behaviour of 
the same variables in the original system (l.l)-(1.3), (3.1). The remaining variables xi and h, 
in (l.l)-(1.3), (3.1) are connected with them by the relation 

(3.4) 

As a result, the transformation of the variables hi, Xi, in the auxiliary linear system (3.2) 
into the final state hi = hf., 3i, = 0 means that the solid is taken into the final position x1 = 0, 
A =A’ as required in Problems 1 and 2. 

In other words, when using the proposed approach, the given state x1 =O, A= A’ of the 
original non-linear system (l.l)-(1.3) (3.1) is first stabilized with respect to some of the 
variables, namely, h,.The partial stabilization problem can be solved as a stabilization problem 
with respect to all the state variables hi = ht,, hi = 0 of the auxiliary linear system (3.2). Here, 
the partial stabilization of the given state x1 = 0, A = A’ of the original non-linear system means 
that the state will also be stabilized with respect to the remaining variables, i.e. xi and 31,. 

Without loss of generality we will henceforth assume that A’ = (1, 0, 0, 0). We will also 
confine ourselves solely to the construction of the control rules (3.1). 

A number of factors increase the complexity of the solution of the auxiliary linear control 
problems. First, the original constraints (1.4) for y must be observed. This leads to the 
corresponding constraints 
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I I u; c a; = const > 0 i3.5) 

on the auxiliary control functions I(,* in (3.2). The procedure of fixing the numbers of can bc 
realized constructively, for example, by choosing the numbers a,* recursively with subsequent 
verification of (1.4) along the trajectories of the corresponding closed system. To do so, one 
must know the explicit form of the trajectories or their acceptable estimates. Within the 
framework of the proposed constructions of control rules, when the original non-linear 
problems 1 and 2 can be reduced to simple linear control problems, such a possibility is full\ 
guaranteed. 

Note that. in principle, the constraints on the auxiliary control functions 1r7 do not have to 
have the same form as the constraints (1.4) on the original control functions II,. 

Now, constraints of the form IIu*II<a* (lIu* II being the Euclidean norm of u* in K’) arc possible in 
place of (3.5). Conversely, the form of (1.4) is directly connected with the possibility of realizing tht, 
resulting rules II, in some class of engines. For example, the constraints (1.4) correspond to three pairs of 
“fixed” engines, while the constraints II u 11~ a correspond to a “vernier” engine [40]. HOWVU, the choice 
of the constraints for U* is determined solely by mathematical considerations, namely. the search for the 
best acceptable control rules UE K within the framework of the proposed solution schcmc. From the 

viewpoint of the most efficient use of the capabilities of the proposed structural scheme of the control 

rules u, this question requires a separate study. 

It is also necessary to take into account the constraints on the phase variables h, whcrrt 
solving the corresponding control problems for the linear system (3.2). In this case the 
efficiency condition I h, IB E = const > 0, I E [I,,. t,] for constructing the control rules (3.1) 
applies. (The value of E can be refined in accordance with the given constraints (1.4) on the 
control functions.) Naturally, it is also necessary to take (1.3) into account. As a result, the 
condition 

z(h+l-&*, tE[t(),t,] (ii, 

for h, in (3.2) must be met (here and henceforth the sums are taken over i from 1 to 3). 
The solution of the problem of time-optimal reorientation of the solid (x” = x1 = 0, f, -4 min) 

based on (3.1) involves the solution of the corresponding time-optimization problem for the 
auxiliary linear system (3.2) (under the constraints (3.5), which arc consistent with (1.4)). In 
this case, being satisfied for I = t,, and I = t!(in the case A’ = (I. 0, 0, 0) only for I == to). condition 
(3.6) must be satisfied for all f E [r,,, t, 1. 

Indeed, WC: shall analyse the corresponding optimum trnjcctories of (3.2), taking Into account I iii’ 
relationships h,(t,)= h(r,)= 0. which follow from (1.2) on the basis of x” = x1 = 0. The trajectories aI e suil! 

that A(r) E [A”. A’] for t E [lo, r,]. Therefore, using (3.6) for I = t, and t = 1, (in the C;IW .A’ :I (i. 0, 0. (1) 

only for I= r,,). we conclude that (3.6) is also satisfied for any ! E [ I,,. I, 1. 

When studying reorientation problems with interference in order to verify (3.6) one must 
analyse all possible trajectories of the corresponding “perturbed” linear systems. Such an 
analysis is presented in Section 4. 

Using (3.1) in the case with interference u! we obtain the “perturbed” linear bystcm 

h, =u; +u; (3.7) 

in place of (3.2). 
The admissible constraints on the “auxiliary interference” u,* are determined by the given 

conditions (1.5) for u,. Namely, we have the qualities uT = x(hOu,A;’ +hzuZAz’) (123). from 
which we obtain the estimates 
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by virtue of (1 S). 
In (3.8) the maximum is computed for t E [t,, tl]. When 1: ~0, and A’ = (1, 0, 0, 0), we have 

I h, I6 1, and I hi Is A”,. Since the estimates (3.8) are obtained using the reinforcing inequalities, 
the levels p* of the “auxiliary interference” UT are somewhat overestimated as compared to 
the real ones. 

4. AUXILIARY GAME-THEORETIC CONTROL PROBLEMS 

In what follows we will consider the “perturbed” linear system (3.7) as a conflict-control 
system. As a result, in the case with interference ui the construction (3.1) can be regarded as 
the general structural form of the control rules in Problems 1 and 2. The parameters of this 
form, i.e. the auxiliary control rules u,* can be determined by solving the corresponding linear 
game-theoretic control problems. 

Following the above assumption A’ = (1, 0, 0, 0), (without loss of generality), we solve (in 
accordance with the control aims in Problems 1 and 2) the problem of reducing system (3.6) to 
the origin of coordinates hi = Xi = 0 in the shortest possible time for any admissible perturba- 
tions u*. We treat this problem as a differential game, in which one of the players (the 
controlling party) can use the auxiliary control functions UT and attempts to minimize the time 
z, of reduction to the desired state h, = 2, = 0. The other player (the opponent) can use the 
“auxiliary perturbations” u,* to increase 2,. The admissible levels of UT (the quantities a* in 
(3.5)) must be such that neither the original constraints (1.4) for U, nor the condition (3.6) are 
violated. Starting from the formulation of Problems 1 and 2 to be solved, the inequalities (1.4) 
and (3.6) must be verified for all admissible realizations of UT. This presents a considerable 
difficulty when the proposed approach is used. The question is discussed in Section 5. For the 
time being, we assume that the levels a, of II, are high enough for uf to exceed u,*. We 
assume that a* take some admissible values, so that a:>&? 

The above differential game for each subsystem of (3.7) is a linear differential game with 
objects of one type subject to the constraints IuTIc a: and IuTk PT= p,aT, 0 <pl < 1. Its 
solution can be reduced [19, 241 to solving the time-optimization problem for the system 

(4.1) 

The boundary conditions are the same as for (3.7). The system (4.1) can be obtained from 
(3.7) with “auxiliary perturbations” uT=-pi@. These “worst” UT, are the optimum control 
functions for the “opponent”. The solution of the time-optimization problem for systems of 
type (4.1) has the form [24,41] 

Uf(hi,h’i) = 
i 

at sign Wip(Xj,h’i), vvip # 0 

of sign hi = -a: sign Xi, I+ff = 0 

\y~(Xi*X~)=-h’, -[2a:(l-pi)]-‘hj(hi( 
(4.2) 

Here Wp are the switching functions. 
In the case of Problem 1 the optimum trajectories of (4.1) begin and finish on the axes X, = 0 

(Fig. 1, where 1: > 0 to be specific). 
The time zi = z,(h,, Xi) necessary for arriving at the origin of coordinates h, = h, = 0 along 

the optimum trajectory of system (4.1) is defined by the equalities [24, 411 
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Fig. 2 

The number 7 = max(T;) defines the minimum guaranteed time in the game-theoretic 
problem for linear system (3.7) under consideration. In the case of Problem 1, we have 

Z=IlMX(Ti), Zi =2{l~~(Ia:(1-pi)]-1}X (4.3) 

since hi = 0. 
Note that if U* differ from the “worst”, then the time needed to move the system to the 

origin will not exceed ‘c, even though the phase trajectories of (3.7) are not optimal. 
From the viewpoint of meeting the constraints (1.4) and (3.6), which are crucial in the 

solution of Problems 1 and 2, we will consider the characteristic features of the phase 
trajectories of system (3.7), (4.2) when uT# -p.zr 1 ,*. We will begin by considering the case UT= 0. 
In this case the motion will begin on the arc of a parabola which is a trajectory of the system 
X, = 117 for rr; of the form (4.2). Next, on reaching the switching curve ~7 = 0, the motion will 
occur along this curve in the sliding regime until the desired final value h, = hl = 0 is reached. 
During this process 2~; takes the values &a,* with infinitely frequent sign changes, so that “on 
average” we have IL: = +(l = p&F on the corresponding branches of the switching curves. 

In the general case the motion occurs initially (until the switching curve is reached) between 
the parabolic arcs of the systems h, = (I- p,)zr; and h, = (1 + pi)@, respectively, lr,* being of the 
form (4.2). (In the case of the system h, = (I+ p,)@ the “auxiliary interference” u,* plays the 
role of additional control functions and has the form UT= p,zr,*.) Then, once the switching curve 
@ =0 is reached, th e system will also move along this curve in the sliding regime until the 
desired finite value h, = h, = 0 is attained. The process of motion (in the case of Problem 1, i.e. 
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for Xi&,) = hi&) = 0) is represented by the solid line in Fig. 2, where, to be specific ?I.; > 0. The 
expressions yip(uyF) =0 can be obtained from J.$ =0 for pi =O and by changing (l-p,) to 
(1 + pi), respectively. 

5. VERIFICATION OF THE PRESCRIBED CONSTRAINTS (1.4) 

For the proposed construction of control rules lfi of the form (3.1), not only the switching 
times but also rdi themselves depend explicitly on x and A. This makes it more difficult to verify 
the given constraints (1.4). Indeed, since x and A depend on UT, the numbers a; (the levels of 
the auxiliary control functions UT) must be consistent with the conditions I yfx, A, u*> 16 ai not 
only for the “worst” realizations u;* = -p,u,?, but also for any admissible realizations ~7. 

Thus the “worst” realizations I$ must be in fact be found twice in the framework of the 
proposed approach. When the values of a: are fixed I$=-p,uF are the “worst” realizations. 
This enables us, for fixed af to determine the minimum guaranteed reorientation time z in 
Problems 1 and 2 as the optimum time in system (4.1). To make a* consistent with the 
constraints (1.4) on II,, other “worst” realizations uy must be distinguished, namely, those for 
which max I y I is attained. 

Nevertheless, the constraints (1.4) can also be verified constructively by estimating 1~~ I on 
the set S of all possible states of the linear system (3.7) (4.2). To this end we refine the 
construction of the control rules (3.1). We differentiate both sides of each equation from the 
second group in (l-2), replacing xi by their expressions from (1.1) and substituting u,* for Xi. 
Solving the resulting equalities for ui, after reduction we get 

To verify (1.4) one can, in particular, use the following assertion. 

Lemma. Let X’ = (1, 0, 0,O) and hy > 0. Assume that for all t E [t,, t, + z] the levels a* of the 
auxiliary control functions u:in (3.7) are chosen according to the inequalities 

(5.2) 

Lt = &&@,a; +X&)+ X,a; + &,a; + qa3 (12 3) 

rj = rnax(l~lh,h, - h21,P2 -k&X,1) (12 3) 

F;= 
0, Ii = (As - AZ )x2x3 sign(max U, ) < 0 

21A,-AzIG,, l-‘, >O (123) 

Here %*? -) are the upper (res~ctively, lower) estimates of h,, $ are the lower estimates of 
Xi on S , and 3i;; = [l = E&)“~. The expressions for q -) and i; are collected in Table 1, in 
which & = 2(1-pi)-‘T* and ~*=([a~(l+p,)]-‘[~~(l-pi)])~. (Note that 7;*<~2/2 and T 6~ for 
all i .) 

Then the given constraints (1.4) on the control rules zli of the form (3.1), (4.2) will be 
satisfied for any admissible forms of the ~terference ui (“auxiliary interference” u;). 

The proof of the lemma is based on an estimate of (5.1). The relationship XX,” =4([(hJ’ x 
X(&h’i)]2 + ZE# is used, which can be verified by direct computations using (3.4). We observe 
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Table L 

t 

[OJ’I 

&T/2] 

(c/2,1;:] 

__ . .._ -_____._. .-. 

-(l+p,)aft 

-(l +pi)a:7;* 

that in the procedure of finding estimates of type (5.2) no generality is lost by using the 
conditions A’ = (1, 0, 0 , 0) and X” > 0. For other boundary conditions estimates of the type in 
question can be obtained by the same scheme. 

Computer simulation revealed that estimates of type (5.2) are suitable for finding max Iu, I 
with a view to determining the guaranteed reorientation time. On the other hand, with the 
same end in view it is desirable to develop an efficient computational procedure for solving the 
corresponding non-linear programming problem to find max I u, I on the set S of possible states 
of a linear system of class (3.7). (4.2). This will make it possible to obtain a more accurate 
estimate of the guaranteed reorientation time. 

Analysing the structure of the control rules (5.1). we also observe that the values of max iu, / 
on S are sufficiently close to the values of max lu, I on the set S* of those possible states 01 
the linear system (3.7), (4.2) that correspond to various combinations of “extreme” and 
“moderate” realizations UT = +p,zr,* and u;” = 0 of u,*. Moreover, the precise computation of 
max I u, I on S* does not present any difficulties. 

Indeed, the structure of (5.1) is such that the growth of max I u, I is essentially determined by the “non- 

synchronism” of the switching times of the auxiliary control functions u: The discussion of the set S* of 

possible states of system (3.7). (4.2) takes into account (even if not completely) the ‘*non-synchronism” of 

switching rr,* Because of this, in the subsequent computation of max I u, I the values of max I u, Ion J’. 

where the effect of “non-synchronism” of switching 14: manifests itself fully, will differ only slightly from 

the values of S *. 

6. THE SOLUTION AL.GORITHM FOR YROBLEM 1 

The above discussion implies that the solution of Problem 1, concerned with the reorient- 
ation of a solid in the presence of interference, can be obtained in close form on the basis of 
constructions of control rules of type (3.1). Indeed, the analysis of possible trajectories of 
system (3.7), (4.2) carried out in Section 4 reveals that the constraints (3.6), being satisfied for 
t = t, and t = t, (in the case A’ = (1, 0, 0, 0) only for t = t,) will also be satisfied for all possible 
trajectories of system (3.7), (4.2) for t E[&, tl]. Relationships of type (5.2) enable one to 
estimate constructively the guaranteed reorientation time z. 

Thus, the algorithm for solving Problem 1 consists of the following steps. 
1. The preliminary choice of the construction of the control rules M, on the basis of structural 

schemes of types (3.1). 
2. Estimation of the “auxiliary perturbations” u: . Finding the numbers pp in (3.8) from p, 

and Al. 
3. Estimation of the auxiliary control functions 14;. The preliminary choice of a,*. 
4. Verification of the constraints (4.1) on I(, along the trajectories of linear systems of type 

(3.7), (4.2) for any admissible realizations of the “auxiliary interference” up. In doing so one 
can rely on relationships of type (5.2). If the inequalities (1.4) are violated, then it is necessary 
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to continue the search for suitable numbers a*. Otherwise the guaranteed reorientation time 
can be determined from (4.3). 

The efficiency (in the sense of the accuracy of estimating 2 from the given constraints (1.4)) 
of the solution of Problem 1 is determined by two factors: (1) the correct choice of the 
structural scheme of the control rules y on the basis of the construction (3.3); (2) the accuracy 
of estimates in the verification of (1.4) for all UT. In this plan the relationships (5.2) should be 
regarded only as possible (admissible), entirely plausible estimates at the previous solution 
stage. In each specific case these estimates can be refined. It is also possible to use both 
optimization methods to find max I u, I, 

Let us also mention the “converse” version of applying the proposed procedure of studying 
Problem 1. In this case, for the given boundary conditions, noise levels U, and values A, an 
acceptable value T of the minimum guaranteed reorientation time is prescribed. Then, knowing 
‘c and @, one can use (4.3) to choose a*. Next the values a, are estimated for some or all 
admissible realizations u*. The “converse” approach can be used to estimate the capabilities of 
the construction of control rules (3.3) when solving Problem 1. 

We summarize the above discussion in the following theorems. 

Theorem 1. If the levels ai of zli in (l.l)-(1.3) are high enough, then for any given levels pi 
of the noises z)~ the rules rdi solving Problem 1 can be constructed on the basis of relationships 
of type (3.1). Moreover, in Problem 1 the guaranteed result is ensured, namely, the solid is 
taken precisely to the prescribed state in finite time z (tl <to +T) for any admissible forms of 
interference ui. The solution of the non-linear problem 1 can be reduced to solving game- 
theoretic problems for auxiliary linear control systems of the form (3.7). The levels j37 of the 
“auxiliary interference” U* depend on pi and A, and are determined by (3.8). The levels a: of 
the auxiliary control functions uf can be established in accordance with relationships of type 
(5.2). The value of 2 depends on the boundary conditions and on a* and p* (which, in turn, 
depend on ai, p, and At) and can be determined from (4.3). 

Theorem 1 defines the possible solutions of Problem 1 by constructing control rules of type 
(3.1). If the given constraints are imposed on u,, then the conditions of Theorem 1 can be 
made more specific as follows. 

Theorem 2. Let A’ = (1, 0, 0,O) and h”, > 0. If for the given levels a, of ldi the levels pi of V, 
are established from the inequalities 

where a,* satisfies conditions of type (5.2), then Problem 1 has a solution. The guaranteed 
reorientation time z is then given by (4.3). 

Rernark. Note that it is possible to estimate the interference V, without using the reinforcing 
inequalities of type (3.8). In this case the quantities j3: are first taken to be arbitrary. as long as they 
do not violate the inequalities j3T< o$. (The quantities CX~ are, in turn, consistent with the given 

condition (4.1) for v, for any admissible @ within the limits IvTl=~fi.) The system of equations 

x(houlA;’ + L2u1A;l - h3u2A;l) = UT (1 2 3) is then solved with respect to v,. Then 

Using (6.1), one can estimate the “true” values of v, corresponding to the assigned values of PT. Such 
estimates of v, are possible for each specific realization of the “auxiliary interference” VT within the 
limits I v: I< PI. 
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7. EXAMPLE 1. THE TRIAXIAL REORIENTATION OF A SPACECRAFT TAKING 
INTERFERENCE INTO ACCOUNT 

For a spacecraft with A, = 4 x IO’, A2=8x10’ and A,=5xlfl’ (kgm’) we consider f’rohlcm : 
concerned with the triaxial r~oriei~tatioll from the initial state x” = 0. ho = (0.7. 0.353. (1.434, 0.432) to the 
prescribed state x1 = 0, A’ = (I, 0, 0,O). 

We define the admissible limits of variation of V, by the inequalities 

If reinforcing inequalities of type (3.8) are then used, we find from (7.1) that 

Solving the resulting system for pi. we get 0, = 39.9, p, = 92.9 and p3 ~57.9 (N mj. However, as will be 

shown, the true values of u1 subject to the constraints (7.1) may turn out to be much larger. 

We will assume that, starting from the technological manoeuvrability requirements for a spacecraft, the 
guaranteed reorientation time z must not exceed T = 70 (s) for the given admissible limits of variation of 
ul. We shall evaluate the processes necessary to achieve this end when using the construction of control 
rules u, of the form (3.1), (4.2) 

By (4.2) and (4.3), the given value T predetermines the values a: of the maximum levels of the 
auxiliary control functions ic:. We begin with the equalities z= tt, which mean that the minimum 
guaranteed reorientation time is “‘levelled” with respect to each variable hj. As a result. we obtain the 

relationships 

2{h~[af(l-pi)l-‘)~ =z (7.2’ “I 

Taking into account that o~fl-~,)=a:--K. where IJT= lO_’ in the case (7.1), we find from (7.2) that 

a* = 1289 x lo-’ 1 . , a” = 1. 354x lo-‘, 2 a; = 1. 3-53x lo- ’ (5~2 ) (‘93) 

Let us estimate the values 01, = maxlu, I for the control rules u, of the form (3.1). (4.2) and (73). 
1. We will first consider the case U; = -p,ur of the “worst” u)t, slowing down as much as possible the 

process of taking the auxiliary linear system (3.7) to the desired state h, = h, = 0. In this case rn! - max i !(, I 
can be found along the trajectories of (4.1). The expressions necessary to carry out the computations are 

presented in Table 2. 
Computations indicate that we have 

a, = 137.8, ~1~ = 300.6, a, = 203.2 (N m) (7.4) 

along the trajectories of (4. t]. 
More precisely, for the “worst” interference * U, the rules 14, of the form (3.1), (4.2) and (7.3) are 

piecewise-continuous functions with discontinuities at I = 2/2. which vary in the ranges 81.0 <I II! I5.Y .137 8. 
209.7 ~1 U, I< 300.6, and 120.6 <:I U, I< 203.2 (N m), The functions U, are shown in Fig. 3. 

t 

4; 
l 

ai 

-(I-pi&t 

(1-pi)ay(t-7) 
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Fig. 3. Fig. 4. 

From (6.1) one can also find a program for varying the interference ui corresponding to the “worst” 

realizations v:. In the case in question vi are piecewise-continuous functions with discontinuities at 

t = r/2 varying in the ranges 80.0 ~1 v, Is 105.2, 159.1~1 v2 Is 220.4, and 100.0 ~1 v, Is 153.3. Note that in 

this case the numbers yi =I v, I x I ui l-l, which characterize the relationship between vi and u,, vary in the 

ranges 0.611 c y1 6 1.030, 0.688 G yz G 0.944, and 0.634 G y3 sO.926, which is, on average, much higher 

than the “golden section” ratio (y, > 0.618 . . . ). 
2. Next, we consider the case vt=O without interference. In this case the trajectories of system (3.6), 

(4.2) (7.3) are described in Section 4. The expressions necessary to estimate I ui I are given in Table 3. We 
have 

Now, unlike the previous case, the reduction time II” will be different for each variable hi. We have 

7;” < z and T,’ = 54.73, Go = 55.63, and Tt = 55.55 (s). Besides, the control rules ui given by (3.1), (4.2), 

(7.2) have five switching moments t= 10.02, 11.49, 11.53, 54.73, 55.55 (s) and vary inside the ranges 

Oslu, Is 137.8, 119.2 <Iu~ lG307.7, and O<lui Is 290.5 (N m). The functions ui are shown in Fig. 4, in 
which, for clarity, a different time scale is introduced in the sections between the points 0, 10.02, 11.49, 
11.53,54.73,55.55,55.63 on the t-axis. Therefore, in the case v* = 0 when there is no interference we have 

a, = 137.8, a2 = 307.7, a3 = 290.5 (N m) (7.5) 

unlike (7.4). 
To assess the performance of the construction (3.1) (4.2) in the case vT=O we take the switching 

curves r$ = 0 in place of @ = 0 in (4.2). In this construction the reorientation time T = 70 (s) (equal to 

the same value z in the “perturbed” problem) is attained for a, = 53.3, a, = 80.2, and a3 = 63.9 (N m). 

However, note that for the given levels (7.1) of vi the construction (3.1), (4.2) with the switching curves 

$ = 0 cannot ensure that the body will be reoriented in finite time. Indeed, in this case a: = 2.886 x lo+, 
a;=3.544x104, and a; = 3.527 x10-” (s-‘) and p, will exceed the “golden section” value for at least 

one i. 

Table 3 

t ifi‘ h’i hi 

-Ui’ 
I 

ai 

0 

-ait 

(l-pi)a:(t-q”) 

0 

AT -~a;t2 

J$(1-pt)af(t-~“)2 

0 
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Table 4 

t 

[O,$l 

i7;*,Ti1 

[T,mmTl 

l4; 

-a: 

a: 

0 

1, A, ---- 
_ 

-(l+pi)afr h? -%(I +pI )c+” 

(1-p;)a:(t-7;) j$(l-pijal(r-- T)” 

0 0 

This means [24] that for the index i in question the auxiliary control functions lr: of the form (4.2) witi 

switching curves up = 0 cannot transform h, to the state h, = h, = 0 in finite time. At the same time, as has 
been shown, the control rules (3.1) and (4.2) with switching curves @ = 0 in (4.2) do ensure the required 
reorientation of the body. 

3. We also consider the case U: = p,u:, when the “auxiliary interference” u: plays the role of the 
additional auxiliary control functions u:. The expressions necessary for computations are presented in 
Table 4. In this case 

As in case 2. the reduction time 7; will be different for each variable h,. Moreover-. J; < 7;” < T and 
T, =.52.49, T2 = 53.12. 7’3 = 53.05 (s). Besides, the control rules (3.1), (4.2). (7.3) have five switching 

moments t= 5.88, 6.92, 6.94,52.49, 53.05 (s) and vary inside the ranges 0 <I/$ IS 137.8. 82.5 %I 1(, IS 338.2. 
and 0 ~1 ug I6 322.5 (N m). Thus, in the case U: = POLL: we get 

a, = 137.8. ct2 = 338.2, a, = 322.5 (N m) 17.5) 

unlike (7.4) and (7.5). 
4. Now let the “auxiliary interference” UT play different roles: UT. UT are functions of the additional 

auxiliary control rules ut and ut, and +O. The expressions necessary for computations can be 
obtained by a suitable combination of the expressions in Tables 2 and 4. 

In this case the reduction times T2 =53.12 and Tj =53.05 (s) for h? and h, are shorter than the 

reduction time Tl” = 54.73 (s) for h,. The rules (3.1), (4.2) and (7.3) have five switching moments I = 6.92. 
6.94, 10.02, 53.05, 53.12 (s) and vary inside the ranges 076.6 SIU, IS 191.3, 0 c-i ZQ I< 429.8, and 
OSIU, I< 234 (N m). The functions U, are shown in Fig. 5, in which. for clarity, we introduce a different 
time scale in the sections between the points 0. 6.92.6.94. 10.02, 53.05. 53.12, 54.73 on the t-axis. It foIlotis 
that in the case in question we have a, = 191.3. a, = 429.8, and a, = 234.8 (N m), unlike (7.3)-(7.6). 



The control of the angular motion of a solid with interference. A game-theoretic approach 471 

5. An analysis of cases 211 only indicates that the control rules ui of the form (3.1), (4.2), (7.3) can 

change quite a lot when the “auxiliary interference” uf differ from the “worst” scenario UT = -p& (case 

1). It is necessary to estimate CL, for any admissible realizations of u :. Computer modelling of estimates 

of type (5.2), encompassing all admissible u? at once, gives the following results: ct, =318.8, ot, =514.5, 

and a, =415.9 (N m). 

Cortclusiorzs. 1. For the given boundary conditions, values of Ai, and interference levels z)$ defined in 

accordance with (7.1), the guaranteed reorientation time s = 70 fs) can be attained in the construction of 
control rules (3.1), (4.2) (7.3) for maxa, = 514.5 (N m). However, this is not only a “cautious”, but also an 
overstated estimate of the admissible levels ui. 

2. For the given interference levels z)( the “unperturbed” construction (3.1), (4.2) with switching curves 
wp = 0 in (4.2), in which czf can be found from the computation of the reorientation time T = 70 (s), 
Problem 1 cannot be solved in a finite time. 

3. The “unperturbed” construction (3.1), (4.2) with switching curves $ = 0 in (4.2), in which a* can be 
found from the computation of the bounds maxa+, =514.5 (N m) (rather than the prescribed 
reorientation time T), guarantees the reorientation ttme t=27.64 (s). Thus the “time expenditure” 
y = z-T due to the interference vi is equal to y= 42.36 (s) for the given levels of U, and vi and the 
“degree of accuracy” of the estimates, 

8. AN ALGORITHM FOR SOLVING THE REORIENTATION PROBLEM WHEN THERE 
IS NO INTERFERENCE (u,=o) 

In this case the algorithm for solving Problem 1 proposed in Section 6 becomes much 
simpler. It involves the following steps. 

1. The preliminary choice of the construction of the control rules ui based on structural 
schemes of type (3.1). 

2. Estimation of the auxiliary control rules u f. The preli~nary choice of the numbers a*. 
3. Verification of the constraints (1.4) and y along the trajectories of linear systems of type 

(3.2) for u,?’ of the form (4.2) with switching curves $‘(h,, Xi)= 0 obtained from @’ = 0 for 
pi = 0. If the estimates (1.4) are violated, one must continue the search for suitable numbers 
a;. Otherwise the guaranteed reorientation time can be determined from (4.3) (for pi = 0). 

Examples of computations by this method and their comparison with the results obtained by 
other widely used methods are given in [13, 311. The comparison indicates that the proposed 
approach is highly efficient. 

It has been established by a numerical method [11] that 27.5 (s) are needed for triaxial reorientation 

of a spacecraft with A, =4x104, A,=8x104, and A,=5x104 (kgm2) from tc’=O, p,,=~,,=rr/lO, 

e. = -7r/4 to K* = 0, pi =t+r, =x/6, 6i =n/4 (K, w, 8 are the Euler angles) subject to the conditions 

I u, IS 300 (N mf. (For comparison, it takes 38.5 (s) to perform a planar turn). The corresponding 
optimum control rules are bang-bang control rules and have one (for a plane turn) or up to four switches. 

Along with this, it was shown in [13, 311 that using the control rules ui of the form (3.1), reorientation can 

be achieved within 29 (s). In this case 14~ are piecewise-continuous and have one switching instant t = 14.5 

(s). Comparison indicates that in the case in question the control rules U, of the form (3.1) are suboptimal 
as regards speed of response. 

9. ESTIMATE OF THE ADMISSIBLE LEVEL OF INTERFERENCE IN PROBLEM 1 

We assume that the solution of the problem of reorienting a solid when there is no 
interference (q = 0) (with the boundary conditions of Problem 1) has been obtained by 
constructing control rules 14, of type (3.1). It is assumed that the optimal speed of response 
problem is solved for the linear system (3.2). The constraints I ui Is a,? are consistent with the 
given constraints (1.4). We state the following problem to estimate the efficiency of the given 
construction (3.1) with interference u,. 
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Problem 3. To find admissible levels p, of u,. for which, as before, the construction (3.1) 
corresponding to the “unperturbed” case ensures that the solid will be precisely reoriented in a 
finite time for any admissible forms of the interference u,. The constraints (1.4) corresponding 
to the “unperturbed” case can be violated. 

Problem 3 only partially characterizes the ability of the construction (3.1) corresponding to 
the “unperturbed” case to prcservc its functional purpose. Indeed, it is not guaranteed that the 
original constraint on II, will be preserved. At the same time, for a positive solution 01 
Problem 3 it is guaranteed that the phase trajectories of system (3.7) will belong to a bounded 
domain of its phase plane (for rr: corresponding to the “unperturbed” case and for all 
admissible u:). This makes it possible, in principle, to give a “forecast” of ol:. for which not 
only the functional purpose of the construction (3.1) corresponding to the ‘unperturbed” case, 
but also the original constraints (1.4) are preserved. Naturally, the length of guaranteed 
reorientation time will increase. 

The solution of Problem 3 can be constructed on the basis of the result of 1241 applied to the 
auxiliary linear systems (3.7). Indeed [24]. the presence of “auxiliary perturbations” u;‘: in the 
construction of auxiliary control rules rr,! in a system of the form (3.7) can be ignored only it 
the ratios p, of the maximum levels 1~:': and rr: do not cxcecd the “golden section” ratio 
p,=(d(5)-1)/2=0.618 . ..). 

The following theorem can be stated on the basis of tht above result and the proposccl 
procedure for solving the reorientation problem for a solid. 

Theorem 3. Let the admissible levels b, of u, he determined by the conditions 

2p; =[maxlhol~,A,~‘+maxlh21~3A~‘+maxl~~l~,A~’]<(~-l)a~ (123) 

(a* are the maximum levels of the auxiliary control rules rr: m the unperturbed” case). Then 
the problem has a solution and the given levels p, arc admissible perturbation levels in this 
problem. 

In connection with Theorem 3 we remark that the proposed approach to the problem of the 
reorientation of a solid, which takes into account the effect of perturbations and is based on 
their game-theoretic model. guarantees a solution of Problem 3 for b,* < a;. 

For a spacecraft with the same values of A, as in Problem 1 we consider the problem of the unlaxial 

reorientation of a unit vector r rigidly attached to it in the directlon of a unit vector s that is stationary in 

an ine.rtial space. To do this, along with Euler’s equations ( 1.1 ) we consider Poisson’s kinematic equation 

~1 ~~2x3 -SJX~ (123), ST +s; +s: = 1 (10.1 ) 

Here S, are the projections of s onto the main ccn~ral axe:; of inertia of the spacecrnft. ‘1’0 fix OUI- ~&as. 

wet set I = (0, 1, 0). In the case in question the direction of r coincides with that of one of the main ccntrai 

axes of inertia of the spacecraft. 

Consider the reorientation from the initial position sz = 0. s, = 0.4. 5, = 0.6 into the final position 

x1 = 0, S, = So = 0. We first solve the problem setting U! = 0 in (1.1). 

We use the control rules [23] 

uj = *uil (j = 1,3), u2 = A2%(x,s) ( 10.2 1 

The plus sign in front of the last term in the expressions for LI, (j = 1. 3) corresponds to 1 = I and thr: 



The control of the angular motion of a solid with interference. A game-theoretic approach 473 

minus sign to j = 3. The forms Gi are such that the linear system 

xi =o, si’=u;. 53 =u; (10.3) 

can be extracted from (l.l), (10.1) and (10.2). (Note that if the indices of U, and UT in (10.2) are in 
agreement, this will not be so for si and ui* in (10.3).) For the linear subsystems s; = u: and si = UT we 
solve the time-of-response optimal control problem of reduction to the origin of coordinates s, = s, = 0 
(j = 1, 3). The constraints I UT I< a,* (j = 1, 3) are then adopted, taking into account the given constraints 

Iu, ICc$ 
It has been established [13] that for maxa, < 170 (Nm ) the reorientation time is T = 28.3 (s). Then 

a: = 3x 10m3 and a: =2x10-’ (s-‘). However, only u1 attains the limit value, while lu, Is14 and 

I lb3 I< 140 (N m). The control rules U, are piecewise-continuous functions with discontinuities when 

t=Tl2. 
We consider the same reorientation problem taking into account possible effects of uncontrollable 

“interference” in the realization of the control rules (10.2). We assume that the “interference” arises in the 

course of processing the auxiliary bang-bang control functions UT (j = 1, 3). When the control structure 
(10.2) is considered, this leads to the condition U, I 0. 

On changing from (l.l), (10.1) and (10.2) to (10.3), taking into account the interference U, and U, we 
obtain the “perturbed” system sj = u,?+u~ (j = 1, 3). Here UT = s2v2A;’ and u: = -s2v1A;‘. On the basis of 
Theorem 3 we conclude that if the levels p, of u, (j = 1, 3) satisfy the inequalities 

(10.4) 

then the control rules (10.2) guarantee that the spacecraft will be precisely reoriented in finite time for the 

most unfavourable action of “interference” in the control channels uj (j = 1, 3). Substituting into (10.4) 

the values a; found when solving the “unperturbed” problem, we obtain estimates of admissible 

“interference” levels: p, < 92.7 and p, < 49.4 (N m). 

11. REGARDING THE SOLUTION OF PROBLEM 2 

Let us point out the properties of the solution of Problem 2. To fix our ideas let A’ = (1, 0, 0, 
0), 19 > 0, and $ > 0. This does not entail any loss of generality. 

Taking the constraints (3.6) into account. The condition x” = 0 is not assumed in Problem 2. 
In this connection it is necessary, in general, to take into account the constraints (3.6), which 
are automatically satisfied in the case x0 =O. The constraints (3.6) will be satisfied only if the 
parabolic sections corresponding to the optimum trajectories of the system X; = (1 + p,)y* with 
I zf Is a: are “steep” enough. These parabolic sections restrict the possible trajectories (for the 
admissible forms of ~7) of system (3.7), (4.2) until they meet the switching curves @ = 0. Such 
a choice of sufficiently “steep” parabolic sections imposes certain constraints on the levels a: 
of the auxiliary control functions rr?. Constraints of this kind can contradict the original 
constraints (1.4) for zr,. 

We shall determine the levels of of the auxiliary control functions u,? that guarantee that 
the conditions (3.6) are satisfied. To this end we observe that the parabolic sections of the 
system Xi = (l+p,)u*, which are of interest, have the form hi = h: -[2aT(l+ pi)]-‘[@ -($)“]. It 
follows that the points of intersection hy of these trajectories with the axes Xi = 0 are given by 

(11.1) 

From (ll.l), taking the inequalities I hi(t) Is hf and Eqs (1.2) into account, we deduce that the 
desired range of values of a* that guarantee that the inequalities (3.6) are satisfied can be 
found from the conditions 
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LX@? +[2af(l +p.)]-‘(f.“)2}2 -= I I I I I . 1 (11.2) 

For any values of af that do not contradict the original constraints (1.4). one can always 
ensure that the conditions (11.2) are met by reducing the angular velocity of the body in 
advance. The problem of reducing the angular velocity can be solved on the basis of Euler‘s 
equations (1.1) alone. I1 is not considered in this paper. On the other hand, if the levels 01, of 
the original control functions II, are high enough, conditions (11.2) can always bc satisfied by 
choosing appropriate values of cx: without violating (1.4). 

The non-uniqueness of the dependence of the maximrrm levels a,* of the auiliary control 
fzuzctiorzs UT on z. Indeed, the solution of Problem 2, even in the “unperturbed” case 
(u, = u,* 5 0) the original constraints (1.4) on the control function II, of the form (3.1) can be 
satisfied for two different sets of values of a;. To the two sets of a; there correspond two sets 
of trajectories of system (3.2) leading to h, = h, = 0. It is as if the two tendencies to increase 
(reduce) cx, in (1.4) by reducing (increasing) h, in the denominator of (3.1) balanced one 
another in the above-mentioned cases. The non-uniqueness is not an obstacle to solving it. It 
suffices to choose the set of a; that corresponds to the shortest control time. One must. 
however, take this property into account when solving the problem. including also the 
“perturbed” case. 

Theorem 4. If the levels a, of II, are chosen in accordance with (11.2). then for any level 01 
interference v, the rules II, in Problem 2 can be stated on the basis of relationships of type 
(3.1). It is then ensured that Problem 1 can be solved precisely for any admissible realizations 
of v,. The solution of the non-linear Problem 2 can be reduced to solving game problems for 
auxiliary linear control systems of the form (3.7). 

In connection with the estimate of the guaranteed reorientation time the conditions of 
Theorem 4 can be made more specific as in Section 6 (taking into account the above- 
mentioned properties). 

The proposed approach to the solution of Problems I and 2 can be modified usmg other 
treatments of the differential game for the auxiliary linear systems of type (3.2). 

For a spacecraft with the same values of it, as in Examples I and 2. WC: considei the triaxial 

reorientation problem with boundary conditions x0 = (0.0101. 0.0111. 0.0176). A” = (0.7, 0.3.53.0.434. 0.432) 

and x1 = 0. A’ = (1. 0, 0, 0). Note that the given initial value x(’ of the angular velocity of the spacccr-aft 

corresponds to large values of the components K, = A,x,” ol the kinetic moment vector K of the 

spacecraft: K, =404. KL =&!H. K, =881) (kg m’s ‘). As in Example 1. we choose the levels p, of 11; in 

accordance with the inequalities (7.1) using relationships (3.X). 

We will use control rules of the form (3.1) to solve the problem. We will confine ourselves to analysing 

the case of the “worst” auxiliary interference * u, that slow down as much as possible the pt-occss of 

bringing the system (j.7) to the position h, = h, = 0 desired from the viewpoint of solving the problem in 

question. The expressions necessary for the computations arc collected in Table 5. where 

a:=py+Ei+(Ef+6f#, , E = (2T2)_’ (27-P + 4hO) 6 = T-y I I* I ! 12.1 i 

The expressions are compiled taking into account the inequalities Xj >O and 2 >(I. which occur for the 

given boundary conditions. and are based on the assumption that 7‘= 7;, where 7; is the reorientation 
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Table 5 

t u; 

Kq** 1 -aI 

IT** ,Tl a: 

xj 

iy -(1-pi)ClIt 

(l-pi)ar(t-T) 

hi - 

X:+X!,--):(l-p,)ayr* 

J$(1--Pi)a;(t-U2 

time for each variable hi. In particular, the expressions for a,? are obtained by solving the equations 

and using the equalities a: (l- pi) = a: -Pt. In the course of finding the solution the roots a: = p: +q - 
(E: + tiff of the equation in question are discarded, because in this case a” -py > 0. 

Computations indicate that, for example, for 114, I s 300 (N m) reorientation is impossible for any Tin 

the framework of the construction of control rules (3.1) and (4.2). This is fully consistent with the first 
property mentioned in Section 11. At the same time, even for maxai =300.9 (Nm) reorientation is 

possible for the case U* = -p,u: of the “worst” u,. In this case T = 120 (s). The functions u, are piecewise - 
continuous and have three switching moments t = 68.61, 72.99, 73.11 (s). We emphasize that reducing as 
well as increasing T will result in a slow increase in ai for a relatively long time interval. Thus, for 

maxaj =302.15 (N m) reorientation is achieved for T = 108 and T =130 (s). This property is also in full 
agreement with the second property mentioned in Section 11. 

I wish to thank Yu. A. Arkhangel’skii, V. V. Rumyantsev, F. L. Chernous’ko and the 
participants at the seminars they organized to discuss the results of this work, as well as to 
S. V. Abramov for his help with the computations. 
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